Keywords

Monitoring, underground structures, sensor data, underdetermined

Abstract

A realistic field monitoring application to evaluate close proximity tunneling effects of a new tunnel on an existing tunnel is presented. A blind source separation (BSS)-based monitoring framework was developed using sensor data collected from the existing tunnel while the new tunnel was excavated. The developed monitoring framework is particularly useful to analyze underdetermined systems due to insufficient sensor data for explicit input force-output deformation relations. The analysis results show that the eigen-parameters obtained from the correlation matrix of raw sensor data can be used as excellent indicators to assess the tunnel structural behaviors during the excavation with powerful visualization capability of tunnel lining deformation. Since the presented methodology is data-driven and not limited to a specific sensor type, it can be employed in various proximity excavation monitoring applications.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2013

Semester

Spring

Advisor

Yun, Hae-Bum

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering; Structures and Geotechnical Engineering

Format

application/pdf

Identifier

CFE0004718

URL

http://purl.fcla.edu/fcla/etd/CFE0004718

Language

English

Release Date

May 2013

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS