Keywords

Training, decision making, technology based instruction, metacognition, individual differences

Abstract

Increased technology reliance along with today’s global fast paced society has produced increasingly complex, dynamic operating environments in disciplines as diverse as the military, healthcare, and transportation. These complex human machine systems often place additional cognitive and metacognitive demands on the operator. Thus, there is a crucial need to develop training tools for all levels of operators in these dynamic systems. The current study was designed to empirically test the effects of four training methods on performance and mental model accuracy in a microworld simulation game. It was hypothesized that process-focused guidance targeting metacognitive level processes as well as combined process and problem focused guidance would result in better performance and mental model accuracy than problemfocused guidance alone or unguided training approaches. Additionally, it was expected that individual differences in prior decision making ability, metacognitive awareness, working memory span, and fluid intelligence would moderate the relationship between the type of instructional guidance and outcomes. Results supported the development of decision-making skills through process-focused instructional guidance, particularly for initially low performing or more novice individuals. Results highlight the importance of individual learner experience prior to training. Similarly, this research aims to expand the literature by providing support for process-focused training as a method to support non-expert decision making skills. While further research needs are outlined, the current research represents an important step forward in both the theoretical literature providing support for instruction designed to support domain general decision making skills in non-experts. iv Practical implications regarding improved guidance for future instructional and training systems design, personnel selection, operator and system performance evaluation, and safety are also discussed.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2013

Semester

Spring

Advisor

Mouloua, Mustapha

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Psychology

Degree Program

Psychology; Human Factors Psychology

Format

application/pdf

Identifier

CFE0004738

URL

http://purl.fcla.edu/fcla/etd/CFE0004738

Language

English

Release Date

May 2013

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Sciences, Sciences -- Dissertations, Academic

Included in

Psychology Commons

Share

COinS