Keywords
Niti, combustion, self propagating combustion synthesis, porosity
Abstract
This thesis describes experimental investigation of thermal and combustion phenomena as well as structure for self- propagating combustion synthesis of porous Ni - Ti intermetallic aimed for structural biomedical application. The control parameters for the porosity distribution have been investigated experimentally through varying the preheat temperature, initial porosity, initial elemental particle size, and applied pressure during the fabrication process. Ni and Ti elemental powders are mixed using a 1:1 ratio. The mixture is compressed using several different compression forces to produce cylindrical samples of 1.1 cm diameter and 2-3cm length, with initial porosity ranging from 30% to 40%. The samples are preheated to various initial temperatures and ignited from the top surface such that the flame propagates axially downwards. The combustion reaction is recorded with a motion camera. An infrared sensor is used to record the temperature profile during the combustion process. The samples are then cut using a diamond saw in both longitudinal and transverse directions. Image analysis software is then used to analyze the porosity distribution in each sample.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2013
Semester
Spring
Advisor
Ilegbusi, Olusegun
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering; Thermo-Fluids
Format
application/pdf
Identifier
CFE0004768
URL
http://purl.fcla.edu/fcla/etd/CFE0004768
Language
English
Release Date
May 2013
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Vanterpool, Jessica, "Combustion Synthesis And Characterization Of Porous Niti Intermetallic For Structural Application" (2013). Electronic Theses and Dissertations. 2590.
https://stars.library.ucf.edu/etd/2590