Keywords

Total ownership cost (toc), manpower cost estimation, manpower requirement, manpower technology trade off, system dynamics modeling (smd)

Abstract

The U.S. Navy has been confronted with budget cuts and constraints during recent years. This reduction in budget compels the U.S. Navy to limit the number of manpower and personnel to control costs. Reducing the total ownership cost (TOC) has become a major topic of interest for the Navy as plans are made for current and future fleets. According to the U.S. Government Accountability Office (GAO, 2003), manpower is the most influential component of determining the life cycle cost of a ship. The vast majority of the TOC is comprised of operating and support (O&S) costs which account for approximately 65 percent of the TOC. Manpower and personnel costs account for approximately 50 percent of O&S costs. This research focused on tradeoff analysis and cost estimation between manpower and new technology implementation. Utilizing concepts from System Dynamics Modeling (SDM), System Dynamics Causal Loop diagrams (CLD) were built to identify major factors when implementing new technology, and then stocks and flows diagrams were developed to estimate manpower cost associated with new technology implementation. The SDM base model reflected an 18 months period for technology implementation, and then compared different technology implementation for different scenarios. This model had been tested by the public data from Department of the Navy (DoN) Budget estimates. The objective of this research was to develop a SDM to estimate manpower cost and technology tradeoff analysis associated with different technology implementations. This research will assist Navy decision makers and program managers when objectively considering the impacts of iii technology selection on manpower and associated TOC, and will provide managers with a better understanding of hidden costs associated with new technology adoption. Recommendations were made for future study in manpower cost estimation of ship systems. In future studies, one particular type of data should be located to test the model for a specific manpower configuration.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2013

Semester

Summer

Advisor

Karwowski, Waldemar

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Industrial Engineering and Management Systems

Degree Program

Modeling and Simulation; Engineering

Format

application/pdf

Identifier

CFE0004869

URL

http://purl.fcla.edu/fcla/etd/CFE0004869

Language

English

Release Date

August 2013

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Included in

Engineering Commons

Share

COinS