Keywords
Maximum Power Point Tracking, Current Sharing, Digital Control
Abstract
Solar power is becoming ever more popular in a variety of applications. It is particularly attractive because of its abundance, renewability, and environment friendliness. Solar powered spacecraft systems have ever-expanding loads with stringent power regulation specifications. Moreover, they require a light and compact design of their power system. These constraints make the optimization of power harvest from solar arrays a critical task. Florida Power Electronics Center (FPEC) at UCF set to develop a modular fault-tolerant power system architecture for space applications. This architecture provides a number of very attractive features including Maximum Power Point Tracking (MPPT) and uniform power stress distribution across the system. MPPT is a control technique that leads the system to operate its solar sources at the point where they provide maximum power. This point constantly moves following changes in ambient operating conditions. A digital controller is setup to locate it in real time while optimizing other operating parameters. This control scheme can increase the energy yield of the system by up to 45%, and thus significantly reduces the size and weight of the designed system. The modularity of the system makes it easy to prototype and expand. It boosts its reliability and allows on-line reconfiguration and maintenance, thus reducing down-time upon faults. This thesis targets the analysis and optimization of this architecture. A new modeling technique is introduced for MPPT in practical environments, and a novel digital power stress distribution scheme is proposed in order to properly distribute peak and thermal stress and improve reliability. A 2kW four-channel prototype of the system was built and tested. Experimental results confirm the theoretical improvements, and promise great success in the field.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2005
Semester
Spring
Advisor
Batarseh, Issa
Degree
Master of Science in Electrical Engineering (M.S.E.E.)
College
College of Engineering and Computer Science
Department
Electrical and Computer Engineering
Degree Program
Electrical Engineering
Format
application/pdf
Identifier
CFE0000469
URL
http://purl.fcla.edu/fcla/etd/CFE0000469
Language
English
Release Date
May 2005
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Al-Atrash, Hussam, "Analysis And Design Of A Modular Solar-fed Fault-tolerant Power System With Maximum Power Point Tracking" (2005). Electronic Theses and Dissertations. 272.
https://stars.library.ucf.edu/etd/272