Keywords
Scanning probe microscopy, atomic force microscopy, near field scanning optical microscopy, optomechanics, force
Abstract
The focus of this dissertation is the study of measuring light not by energy transfer as is done with a standard photodetector such as a photographic film or charged coupled device, but rather by the forces which the light exerts on matter. In this manner we are able to replace or complement standard photodetector-based light detection techniques. One key attribute of force detection is that it permits the measurement of light over a very large range of frequencies including those which are difficult to access with standard photodetectors, such as the far IR and THz. The dissertation addresses the specific phenomena associated with optically induced force (OIF) detection in the near-field where light can be detected with high spatial resolution close to material interfaces. This is accomplished using a scanning probe microscope (SPM), which has the advantage of already having a sensitive force detector integrated into the system. The two microscopies we focus on here are atomic force microscopy (AFM) and nearfield scanning optical microscopy (NSOM). By detecting surface-induced forces or force gradients applied to a very small size probe (~ 20 nm diameter), AFM measures the force acting on the probe as a function of the tip-sample separation or extracts topography information. Typical NSOM utilizes either a small aperture (~ 50 150 nm diameter) to collect and/or radiate light in a small volume or a small scatterer (~ 20 nm diameter) in order to scatter light in a very small volume. This light is then measured with an avalanche photodiode or a photomultiplier tube. These two modalities may be combined in order to simultaneously map the local intensity distribution and topography of a sample of interest. A critical assumption made when performing iv such a measurement is that the distance regulation, which is based on surface induced forces, and the intensity distribution are independent. In other words, it is assumed that the presence of optical fields does not influence the AFM operation. However, it is well known that light exerts forces on the matter with which it interacts. This light-induced force may affect the atomic force microscope tip-sample distance regulation mechanism or, by modifying the tip, it may also indirectly influence the distance between the probe and the surface. This dissertation will present evidence that the effect of optically induced forces is strong enough to be observed when performing typical NSOM measurements. This effect is first studied on common experimental situations to show where and how these forces manifest themselves. Afterward, several new measurement approaches are demonstrated, which take advantage of this additional information to either complement or replace standard NSOM detection. For example, the force acting on the probe can be detected while simultaneously extracting the tip-sample separation, a measurement characteristic which is typically difficult to obtain. Moreover, the standard field collection with an aperture NSOM and the measurement of optically induced forces can be operated simultaneously. Thus, complementary information about the field intensity and its gradient can be, for the first time, collected with a single probe. Finally, a new scanning probe modality, multi-frequency NSOM (MF-NSOM), will be demonstrated. In this approach, the tuning fork is driven electrically at one frequency to perform a standard tip-sample distance regulation to follow the sample topography and optically driven at another frequency to measure the optically induced force. This novel technique provides a viable alternative to standard NSOM scanning and should be of particular interest in the long wavelength regime, e.g. far IR and THz.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2013
Semester
Spring
Advisor
Dogariu, Aristide
Degree
Doctor of Philosophy (Ph.D.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics
Format
application/pdf
Identifier
CFE0004705
URL
http://purl.fcla.edu/fcla/etd/CFE0004705
Language
English
Release Date
May 2016
Length of Campus-only Access
3 years
Access Status
Doctoral Dissertation (Open Access)
Subjects
Dissertations, Academic -- Optics and Photonics, Optics and Photonics -- Dissertations, Academic
STARS Citation
Kohlgraf-Owens, Dana, "Optically Induced Forces In Scanning Probe Microscopy" (2013). Electronic Theses and Dissertations. 2904.
https://stars.library.ucf.edu/etd/2904