Keywords
Impingement, nusselt number, side wall heat transfer, near wall cooling, impingement channel, single row impingement channel, kapat, claretti, ricklick
Abstract
The present work studies the relationship between target and sidewall surfaces of a multirow, narrow impingement channel at various jet heights with one impingement hole per row. Temperature sensitive paint and constant flux heaters are used to gather heat transfer data on the target and side walls. Jet-to-target distance is set to 1, 2, 3, 5, 7 and 9 jet diameters. The channel width is 4 jet diameters and the jet stream wise spacing is 5 jet diameters. All cases were run at Reynolds numbers ranging from 5,000 to 30,000. Pressure data is also gathered and used to calculate the channel mass flux profiles, used to better understand the flow characteristics of the impingement channel. While target plate heat transfer profiles have been thoroughly studied in the literature, side wall data has only recently begun to be studied. The present work shows the significant impact the side walls provide to the overall heat transfer capabilities of the impingement channel. It was shown that the side walls provide a significant amount of heat transfer to the channel. A channel height of three diameters was found to be the optimum height in order to achieve the largest heat transfer rates out of all channels.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2013
Semester
Fall
Advisor
Kapat, Jayanta S.
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering; Thermo-Fluids
Format
application/pdf
Identifier
CFE0004985
URL
http://purl.fcla.edu/fcla/etd/CFE0004985
Language
English
Release Date
12-15-2016
Length of Campus-only Access
3 years
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Claretti, Roberto, "Heat And Fluid Flow Characterization Of A Single-hole-per-row Impingement Channel At Multiple Impingement Heights" (2013). Electronic Theses and Dissertations. 2936.
https://stars.library.ucf.edu/etd/2936