Keywords

Enrollment, hybrid simulation, simulation model, decision making, university

Abstract

Decision support systems for university management have had limited improvement in the incorporation of new cutting-edge techniques. Most decisionmakers use traditional forecasting methods to base their decisions in order to maintain financially affordable programs and keep universities competitive for the last few decades. Strategic planning for universities has always been related to enrollment revenues, and operational expenses. Enrollment models in use today are able to represent forecasting based on historical data, considering usual variables like student headcount, student credit, among others. No consideration is given to students’ preferences. Retention models, associated to enrollment, deal with average retention times leaving off preferences as well. Preferences play a major role at institutions where students are not required to declare their intentions (major) immediately. Even if they do, they may change it if they find another, more attractive major, or they may even decide to leave college for external reasons. Enrollment models have been identified to deal with three main purposes: prediction of income from tuition (in-state, out-of-state), planning of future courses and curriculum, and allocation of resources to academic departments, This general perspective does not provide useful information to faculty and Departments for iv detailed planning and allocation of resources for the next term or year. There is a need of new metrics to help faculty and Departments to reach a detailed and useful level in order to effectively plan this allocation of resources. The dynamics in the rate-of-growth, the preferences students have for certain majors at a specific point of time, or economic hardship make a difference when decisions have to be made for budgets requests, hiring of faculty, classroom assignment, parking, transportation, or even building new facilities. Existing models do not make difference between these variables. This simulation model is a hybrid model that considers the use of System Dynamics, Discrete-event and Agent-based simulation, which allows the representation of the general enrollment process at the University level (strategic decisions), and enrollment, retention and major selection at the College (tactical decisions) and Department level (operational decisions). This approach allows lower level to more accurately predict the number of students retained for next term or year, while allowing upper levels to decide on new students to admit (first time in college and transfers) and results in recommendations on faculty hiring, class or labs assignment, and resource allocation. This model merges both high and low levels of student’s enrollment models into one application, allowing not only representation of the current overall enrollment, but also prediction at the College and Department level. This provides information on optimal classroom assignments, faculty and student resource allocation.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2013

Semester

Fall

Advisor

Sepulveda, Jose

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Industrial Engineering and Management Systems

Degree Program

Modeling and Simulation

Format

application/pdf

Identifier

CFE0005055

URL

http://purl.fcla.edu/fcla/etd/CFE0005055

Language

English

Release Date

12-15-2016

Length of Campus-only Access

3 years

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Included in

Engineering Commons

Share

COinS