Keywords
Multiphase, dynamic, transient, dvid
Abstract
Future microprocessors pose many challenges to the power conversion techniques. Multiphase synchronous buck converters have been widely used in high current low voltage microprocessor application. Design optimization needs to be carefully carried out with pushing the envelope specification and ever increasing concentration towards power saving features. In this work, attention has been focused on dynamic aspects of multiphase synchronous buck design. The power related issues and optimizations have been comprehensively investigated in this paper. In the first chapter, multiphase DC-DC conversion is presented with background application. Adaptive voltage positioning and various nonlinear control schemes are evaluated. Design optimization are presented to achieve best static efficiency over the entire load range. Power loss analysis from various operation modes and driver IC definition are studied thoroughly to better understand the loss terms and minimize the power loss. Load adaptive control is then proposed together with parametric optimization to achieve optimum efficiency figure. New nonlinear control schemes are proposed to improve the transient response, i.e. load engage and load release responses, of the multiphase VR in low frequency repetitive transient. Drop phase optimization and PWM transition from long tri-state phase are presented to improve the smoothness and robustness of the VR in mode transition. During high frequency repetitive transient, the control loop should be optimized and nonlinear loop should be turned off. Dynamic current sharing are thoroughly studied in chapter 4. The output impedance of the multiphase v synchronous buck are derived to assist the analysis. Beat frequency is studied and mitigated by proposing load frequency detection scheme by turning OFF the nonlinear loop and introducing current protection in the control loop. Dynamic voltage scaling (DVS) is now used in modern Multi-Core processor (MCP) and multiprocessor System-on-Chip (MPSoC) to reduce operational voltage under light load condition. With the aggressive motivation to boost dynamic power efficiency, the design specification of voltage transition (dv/dt) for the DVS is pushing the physical limitation of the multiphase converter design and the component stress as well. In this paper, the operation modes and modes transition during dynamic voltage transition are illustrated. Critical dead-times of driver IC design and system dynamics are first studied and then optimized. The excessive stress on the control MOSFET which increases the reliability concern is captured in boost mode operation. Feasible solutions are also proposed and verified by both simulation and experiment results. CdV/dt compensation for removing the AVP effect and novel nonlinear control scheme for smooth transition are proposed for dealing with fast voltage positioning. Optimum phase number control during dynamic voltage transition is also proposed and triggered by voltage identification (VID) delta to further reduce the dynamic loss. The proposed schemes are experimentally verified in a 200 W six phase synchronous buck converter. Finally, the work is concluded. The references are listed.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2013
Semester
Fall
Advisor
Wu, Thomas X.
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Science
Degree Program
Electrical Engineering
Format
application/pdf
Identifier
CFE0005079
URL
http://purl.fcla.edu/fcla/etd/CFE0005079
Language
English
Release Date
12-15-2016
Length of Campus-only Access
3 years
Access Status
Doctoral Dissertation (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Zhang, Kejiu, "Analysis And Design Optimization Of Multiphase Converter" (2013). Electronic Theses and Dissertations. 2947.
https://stars.library.ucf.edu/etd/2947