Keywords
Fiber laser, fiber amplifier, photonic crystal fiber, master oscillator power amplifier, thulium
Abstract
Thulium based fiber lasers represent a promising alternative for pulse energy scaling and high peak power generation with ytterbium based systems at 1µm. Advantages of thulium arise from the operation at longer wavelengths and a large gain bandwidth (1.8-2.1µm). Nonlinear effects, such as self phase modulation, stimulated Raman scattering and stimulated Brillouin scattering generally limit peak power scaling in fiber lasers. The longer wavelength of thulium fiber lasers and large mode field areas can significantly increase the nonlinear thresholds. Compared to 1µm systems, thulium fiber lasers enable single mode guidance for two times larger mode field diameter in step index fibers. Similar behavior is expected for index guiding thulium doped photonic crystal fibers. In this work a novel thulium doped rod type photonic crystal fiber design with large mode field diameter ( > 50µm) was first characterized in CW-lasing configuration and then utilized as final amplifier in a two stage master oscillator power amplifier. The system generated MW-level peak power at 6.5ns pulse duration and 1kHz repetition rate. This world record performance exemplifies the potential of thulium fiber lasers to supersede ytterbium based systems for very high peak power generation in the future. As part of this work a computer model for the transient simulation of pulsed amplification in thulium based fiber lasers was developed. The simulations are in good agreement with the experimental results. The computer model can be used for efficient optimization of future thulium based fiber amplifier designs.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2013
Semester
Summer
Advisor
Richardson, Martin
Degree
Master of Fine Arts (M.F.A.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics; International
Format
application/pdf
Identifier
CFE0004845
URL
http://purl.fcla.edu/fcla/etd/CFE0004845
Language
English
Release Date
8-15-2018
Length of Campus-only Access
5 years
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Optics and Photonics, Optics and Photonics -- Dissertations, Academic
STARS Citation
Gaida, Christian, "Peak Power Scaling Of Nanosecond Pulses In Thulium Based Fiber Lasers" (2013). Electronic Theses and Dissertations. 2977.
https://stars.library.ucf.edu/etd/2977