Keywords

Facial, recognition, pca, 2dpca, (2d)^2pca, td2dpca, dct, histogram

Abstract

In recent years, there has been an increasing interest in face recognition. As a result, many new facial recognition techniques have been introduced. Recent developments in the field of face recognition have led to an increase in the number of available face recognition commercial products. However, Face recognition techniques are currently constrained by three main factors: recognition accuracy, computational complexity, and storage requirements. The problem is that most of the current face recognition techniques succeed in improving one or two of these factors at the expense of the others. In this dissertation, four novel face recognition techniques that improve the storage and computational requirements of face recognition systems are presented and analyzed. Three of the four novel face recognition techniques to be introduced, namely, Quantized/truncated Transform Domain (QTD), Frequency Domain Thresholding and Quantization (FD-TQ), and Normalized Transform Domain (NTD). All the three techniques utilize the Two-dimensional Discrete Cosine Transform (DCT-II), which reduces the dimensionality of facial feature images, thereby reducing the computational complexity. The fourth novel face recognition technique is introduced, namely, the Normalized Histogram Intensity (NHI). It is based on utilizing the pixel intensity histogram of poses' subimages, which reduces the computational complexity and the needed storage requirements. Various simulation experiments using MATLAB were conducted to test the proposed methods. For the purpose of benchmarking the performance of the proposed methods, the simulation experiments were performed using current state-of-the-art face recognition techniques, namely, Two Dimensional Principal Component Analysis (2DPCA), Two-Directional Two-Dimensional Principal Component Analysis ((2D)^2PCA), and Transform Domain Two Dimensional Principal Component Analysis (TD2DPCA). The experiments were applied to the ORL, Yale, and FERET databases. The experimental results for the proposed techniques confirm that the use of any of the four novel techniques examined in this study results in a significant reduction in computational complexity and storage requirements compared to the state-of-the-art techniques without sacrificing the recognition accuracy.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2013

Semester

Fall

Advisor

Mikhael, Wasfy

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0005297

URL

http://purl.fcla.edu/fcla/etd/CFE0005297

Language

English

Release Date

June 2019

Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS