Keywords
Qdots, e.coli, heavy metal, nac, dhla
Abstract
Heavy metal (HM) containing quantum dots (Qdots) are increasingly used in commercial products due to their unique electronic, optoelectronic, optical and magnetic properties. Once disposed to the landfill, environmental weathering is likely to compromise HM Qdot integrity, leading to release of heavy metal ions. To minimize any negative environmental impact of HM Qdots, there is an increasing demand for developing HM free or environmentally-friendly surface modified HM Qdot alternatives. In this study, synthesis of HM free ZnS:Mn/ZnS and surface modified HM CdS:Mn/ZnS Qdots (using N-acetylcysteine, NAC, and Dihydrolipoic acid, DHLA) and their potential toxicity assessment using E. coli as a model system is reported. NAC and DHLA are known antioxidants and therefore expected to reduce HM induced toxicity and improve colloidal stability of Qdots. All Qdots were synthesized at room temperature using a reverse micelle microemulsion method. Qdots were fully characterized using UV-visible absorption spectroscopy, fluorescence emission spectroscopy, zeta potential, Nuclear Magnetic Resonance spectroscopy (NMR) and High Resolution Transmission Electron Microscopy (HRTEM). Qdot environmental weathering was simulated by treating Qdots with concentrated acid (6N HCl). Qdot toxicity was evaluated on E. coli growth and viability using growth curves, turbidity and bactericidal assays (CFU). Results show that Zn based Qdots exhibit reduced toxicity on E.coli growth and viability when compared to Cd based Qdots. In addition, surface modification with NAC and DHLA minimized toxicity of Cd based Qdots. In summary, Zn based Qdots appear to be more environmental-friendly than Cd based Qdots
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2013
Semester
Fall
Advisor
Santra, Swadeshmukul
Degree
Master of Science (M.S.)
College
College of Medicine
Department
Molecular Biology and Microbiology
Degree Program
Biomedical Sciences
Format
application/pdf
Identifier
CFE0005426
URL
http://purl.fcla.edu/fcla/etd/CFE0005426
Language
English
Release Date
June 2019
Length of Campus-only Access
5 years
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Medicine, Medicine -- Dissertations, Academic
STARS Citation
Tharkur, Jeremy, "Screening Of Quantum Dots For Toxicity On The Growth And Viability Of Escherichia Coli" (2013). Electronic Theses and Dissertations. 3012.
https://stars.library.ucf.edu/etd/3012