Keywords
multiple response surface, response surface method, interactive surrogate worth trade-off, modified interactive surrogate worth trade-off, decision-maker, trade-off
Abstract
The focus of this dissertation is on improving decision-maker trade-offs and the development of a new constrained methodology for multiple response surface optimization. There are three key components of the research: development of the necessary conditions and assumptions associated with constrained multiple response surface optimization methodologies; development of a new constrained multiple response surface methodology; and demonstration of the new method. The necessary conditions for and assumptions associated with constrained multiple response surface optimization methods were identified and found to be less restrictive than requirements previously described in the literature. The conditions and assumptions required for a constrained method to find the most preferred non-dominated solution are to generate non-dominated solutions and to generate solutions consistent with decision-maker preferences among the response objectives. Additionally, if a Lagrangian constrained method is used, the preservation of convexity is required in order to be able to generate all non-dominated solutions. The conditions required for constrained methods are significantly fewer than those required for combined methods. Most of the existing constrained methodologies do not incorporate any provision for a decision-maker to explicitly determine the relative importance of the multiple objectives. Research into the larger area of multi-criteria decision-making identified the interactive surrogate worth trade-off algorithm as a potential methodology that would provide that capability in multiple response surface optimization problems. The ISWT algorithm uses an ε-constraint formulation to guarantee a non-dominated solution, and then interacts with the decision-maker after each iteration to determine the preference of the decision-maker in trading-off the value of the primary response for an increase in value of a secondary response. The current research modified the ISWT algorithm to develop a new constrained multiple response surface methodology that explicitly accounts for decision-maker preferences. The new Modified ISWT (MISWT) method maintains the essence of the original method while taking advantage of the specific properties of multiple response surface problems to simplify the application of the method. The MISWT is an accessible computer-based implementation of the ISWT. Five test problems from the multiple response surface optimization literature were used to demonstrate the new methodology. It was shown that this methodology can handle a variety of types and numbers of responses and independent variables. Furthermore, it was demonstrated that the methodology can be successful using a priori information from the decision-maker about bounds or targets or can use the extreme values obtained from the region of operability. In all cases, the methodology explicitly considered decision-maker preferences and provided non-dominated solutions. The contribution of this method is the removal of implicit assumptions and includes the decision-maker in explicit trade-offs among multiple objectives or responses.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2007
Semester
Summer
Advisor
Armacost, Robert
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Industrial Engineering and Management Systems
Degree Program
Industrial Engineering
Format
application/pdf
Identifier
CFE0001765
URL
http://purl.fcla.edu/fcla/etd/CFE0001765
Language
English
Release Date
September 2007
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Hawkins, Alicia, "Decision-maker Trade-offs In Multiple Response Surface Optimization" (2007). Electronic Theses and Dissertations. 3196.
https://stars.library.ucf.edu/etd/3196