Keywords

solitons, nonlinear, PDE, variational, Lagrangian, Hamilton

Abstract

Throughout the last several decades many techniques have been developed in establishing solutions to nonlinear partial differential equations (NPDE). These techniques are characterized by their limited reach in solving large classes of NPDE. This body of work will study the analysis of NPDE using two of the most ubiquitous techniques developed in the last century. In this body of work, the analysis and techniques herein are applied to unsolved physical problems in both the fields of variational approximations and inverse scattering transform. Additionally, a new technique for estimating the error of a variational approximation is established. Note that the material in chapter 2, "Quantitative Measurements of Variational Approximations" has recently been published. Variational problems have long been used to mathematically model physical systems. Their advantage has been the simplicity of the model as well as the ability to deduce information concerning the functional dependence of the system on various parameters embedded in the variational trial functions. However, the only method in use for estimating the error in a variational approximation has been to compare the variational result to the exact solution. In this work, it is demonstrated that one can computationally obtain estimates of the errors in a one-dimensional variational approximation, without any a priori knowledge of the exact solution. Additionally, this analysis can be done by using only linear techniques. The extension of this method to multidimensional problems is clearly possible, although one could expect that additional difficulties would arise. One condition for the existence of a localized soliton is that the propagation constant does not fall into the continuous spectrum of radiation modes. For a higher order dispersive systems, the linear dispersion relation exhibits a multiple branch structure. It could be the case that in a certain parameter region for which one of the components of the solution has oscillations (i.e., is in the continuous spectrum), there exists a discrete value of the propagation constant, k(ES), for which the oscillations have zero amplitude. The associated solution is referred to as an embedded soliton (ES). This work examines the ES solutions in a CHI(2):CHI(3), type II system. The method employed in searching for the ES solutions is a variational method recently developed by Kaup and Malomed [Phys. D 184, 153-61 (2003)] to locate ES solutions in a SHG system. The variational results are validated by numerical integration of the governing system. A model used for the 1-D longitudinal wave propagation in microstructured solids is a KdV-type equation with third and fifth order dispersions as well as first and third order nonlinearities. Recent work by Ilison and Salupere (2004) has identified certain types of soliton solutions in the aforementioned model. The present work expands the known family of soliton solutions in the model to include embedded solitons. The existence of embedded solitons with respect to the dispersion parameters is determined by a variational approximation. The variational results are validated with selected numerical solutions.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2007

Semester

Summer

Advisor

Kaup, David

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Mathematics

Degree Program

Mathematics

Format

application/pdf

Identifier

CFE0001800

URL

http://purl.fcla.edu/fcla/etd/CFE0001800

Language

English

Release Date

September 2007

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Included in

Mathematics Commons

Share

COinS