Keywords
heterogeneous MANET, m-limited forwarding, power-aware routing, asymmetric routing, time-parallel simulation, compressed history
Abstract
In a heterogeneous mobile ad hoc network (MANET), assorted devices with different computation and communication capabilities co-exist. In this thesis, we consider the case when the nodes of a MANET have various degrees of mobility and range, and the communication links are asymmetric. Many routing protocols for ad hoc networks routinely assume that all communication links are symmetric, if node A can hear node B and node B can also hear node A. Most current MAC layer protocols are unable to exploit the asymmetric links present in a network, thus leading to an inefficient overall bandwidth utilization, or, in the worst case, to lack of connectivity. To exploit the asymmetric links, the protocols must deal with the asymmetry of the path from a source node to a destination node which affects either the delivery of the original packets, or the paths taken by acknowledgments, or both. Furthermore, the problem of hidden nodes requires a more careful analysis in the case of asymmetric links. MAC layer and routing protocols for ad hoc networks with asymmetric links require a rigorous performance analysis. Analytical models are usually unable to provide even approximate solutions to questions such as end-to-end delay, packet loss ratio, throughput, etc. Traditional simulation techniques for large-scale wireless networks require vast amounts of storage and computing cycles rarely available on single computing systems. In our search for an effective solution to study the performance of wireless networks we investigate the time-parallel simulation. Time-parallel simulation has received significant attention in the past. The advantages, as well as, the theoretical and practical limitations of time-parallel simulation have been extensively researched for many applications when the complexity of the models involved severely limits the applicability of analytical studies and is unfeasible with traditional simulation techniques. Our goal is to study the behavior of large systems consisting of possibly thousands of nodes over extended periods of time and obtain results efficiently, and time-parallel simulation enables us to achieve this objective. We conclude that MAC layer and routing protocols capable of using asymmetric links are more complex than traditional ones, but can improve the connectivity, and provide better performance. We are confident that approximate results for various performance metrics of wireless networks obtained using time-parallel simulation are sufficiently accurate and able to provide the necessary insight into the inner workings of the protocols.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2007
Semester
Summer
Advisor
Marinescu, Dan
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0001736
URL
http://purl.fcla.edu/fcla/etd/CFE0001736
Language
English
Release Date
September 2007
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Wang, Guoqiang, "Mac Layer And Routing Protocols For Wireless Ad Hoc Networks With Asymmetric Links And Performance Evaluation Studies" (2007). Electronic Theses and Dissertations. 3401.
https://stars.library.ucf.edu/etd/3401