Keywords

Surface Plasmon Resonance, biosensor, optoelectronic, integrated optics, high throughput

Abstract

Current major demands in SPR sensor development are system miniaturization and throughput improvement. Structuring an array of integrated optical SPR sensor heads on a semiconductor based optoelectronic platform could be a promising solution for those issues, since integrated optical waveguides have highly miniaturized dimension and the optoelectronic platform enables on-chip optical-to-electrical signal conversion. Utilizing a semiconductor based platform to achieve optoelectronic functionality poses requirements to the senor head; the sensor head needs to have reasonably small size while it should have reasonable sensitivity and fabrication tolerance. This research proposes a novel type of SPR sensor head and demonstrates a fabricated device with an array of integrated optical SPR sensor heads endowed with optoelectronic functionality. The novel integrated optical SPR sensor head relies on mode conversion efficiency for its operational principle. The beauty of this type of sensor head is it can produce clear contrast in SPR spectrum with a highly miniaturized and simple structure, in contrast to several-millimeter-scale conventional absorption type or interferometer type sensor heads. The integrated optical SPR sensor with optoelectronic functionality has been realized by structuring a dielectric waveguide based SPR sensor head on a photodetector-integrated semiconductor substrate. A large number of unit sensors have been fabricated on a substrate with a batch fabrication process, which promises a high throughput SPR sensor system or low-priced disposable sensors.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2008

Advisor

LiKamWa, Patrick

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics

Format

application/pdf

Identifier

CFE0002312

URL

http://purl.fcla.edu/fcla/etd/CFE0002312

Language

English

Release Date

November 2008

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS