Keywords
MicroPCM, NanoPCM, Microchannel Heat Sinks, Manifold Microchannels, Particle Migration, PCM Slurry Flow
Abstract
Heat transfer and flow characteristics of phase change material slurry flow in microchannels with constant heat flux at the base were investigated. The phase change process was included in the energy equation using the effective specific heat method. A parametric study was conducted numerically by varying the base fluid type, particle concentration, particle size, channel dimensions, inlet temperature, base heat flux and melting range of PCM. The particle distribution inside the microchannels was simulated using the diffusive flux model and its effect on the overall thermal performance of microchannels was investigated. Experimental investigation was conducted in microchannels of 101 [micro]m width and 533 [micro]m height with water as base fluid and n-Octadecane as PCM to validate the key conclusions of the numerical model. Since the flow is not fully developed in case of microchannels (specifically manifold microchannels, which are the key focus of the present study), thermal performance is not as obtained in conventional channels where the length of the channel is large (compared to length of microchannels). It was found that the thermal conductivity of the base fluid plays an important role in determining the thermal performance of slurry. The effect of particle distribution can be neglected in the numerical model under some cases. The performance of slurry depends on the heat flux, purity of PCM, inlet temperature of the fluid, and base fluid thermal conductivity. Hence, there is an application dependent optimum condition of these parameters that is required to obtain the maximum thermal performance of PCM slurry flows in microchannels.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2009
Advisor
Chow, Louis
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Mechanical, Materials, and Aerospace Engineering
Degree Program
Mechanical Engineering
Format
application/pdf
Identifier
CFE0002835
URL
http://purl.fcla.edu/fcla/etd/CFE0002835
Language
English
Release Date
September 2009
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Kuravi, Sarada, "Numerical Study Of Encapsulated Phase Change Material (epcm) Slurry Flow In Microchannels" (2009). Electronic Theses and Dissertations. 3934.
https://stars.library.ucf.edu/etd/3934