Keywords
Dissociative Recombination, H3+, MQDT
Abstract
Dissociative recombination of molecular ions by collisions with electrons is a reactive collision, in which the electronic kinetic energy is transferred to the excitation of the molecule that, then, dissociates. The goals of this dissertation was (1) to improve existing approaches in theory of DR of triatomic ions in the time-independent framework developed in recent years by Kokoouline and Greene, and (2) to develop a time-dependent theoretical framework for DR treatment based on quantum defect theory. The theoretical method developed by Kokoouline and Greene is based on multichannel quantum defect theory and accounts for the major non-Born-Oppenheimer Jahn-Teller interaction between electronic and vibrational motions of the molecule. The study of this dissertation is partially based on this method but improved, extended, and systematically applied in the framework of my thesis. This dissertation presents the calculated DR rate coefficient for H3+ within the time-independent framework and the description of the method used to obtain the (qualitative) flux with time-dependent method. The time-independent results show good agreement with experimental data from storage ring experiments. The DR rate coefficients for ortho- and para-H3+ were calculated separately and show a significant difference at very low electronic energies; a result that agrees with recent storage ring experiments. Also, it is discussed results for other isotopologues of H3+ (H2D+, D2H+, and D3+) and the results for vibrationally-excited initial states of H3+. It was found that the DR rate coefficients for vibrationally-excited initial states are larger than the rates for the ion initially in the ground vibrational state. At the end, this dissertation discuss the time-dependent calculations done with a diatomic model system.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2009
Advisor
Kokoouline, Viatcheslav
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Physics
Degree Program
Physics
Format
application/pdf
Identifier
CFE0002668
URL
http://purl.fcla.edu/fcla/etd/CFE0002668
Language
English
Release Date
May 2009
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Santos, Samantha, "Theoretical And Computational Studies Of Dissociative Recombination Of H3+ With Low Kinetic Energy Electrons: Time-independent A" (2009). Electronic Theses and Dissertations. 3937.
https://stars.library.ucf.edu/etd/3937