Keywords

hyperspherical approach, three-body resonances, hydrogen predissociated states, conical intersection, three-body recombination, slow variable discretization, three-body processes

Abstract

This thesis discusses the development and application of theoretical and computational methods to study three-body processes. The main focus is on the calculation of three-body resonances and bound states. This broadly includes the study of Efimov states and resonances, three-body shape resonances, three-body Feshbach resonances, three-body pre-dissociated states in systems with a conical intersection, and the calculation of three-body recombination rate coefficients. The method was applied to a number of systems. A chapter of the thesis is dedicated to the related study of deriving correlation diagrams for three-body states before and after a three-body collision. More specifically, the thesis discusses the calculation of the H+H+H three-body recombination rate coefficient using the developed method. Additionally, we discuss a conceptually simple and effective diabatization procedure for the calculation of pre-dissociated vibrational states for a system with a conical intersection. We apply the method to H_3, where the quantum molecular dynamics are notoriously difficult and where non-adiabatic couplings are important, and a correct description of the geometric phase associated with the diabatic representation is crucial for an accurate representation of these couplings. With our approach, we were also able to calculate Efimov-type resonances. The calculations of bound states and resonances were performed by formulating the problem in hyperspherical coordinates, and obtaining three-body eigenstates and eigen-energies by applying the hyperspherical adiabatic separation and the slow variable discretization. We employed the complex absorbing potential to calculate resonance energies and lifetimes, and introduce an uniquely defined diabatization procedure to treat X_3 molecules with a conical intersection. The proposed approach is general enough to be applied to problems in nuclear, atomic, molecular and astrophysics.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2009

Advisor

Kokoouline, Viatcheslav

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Physics

Degree Program

Physics

Format

application/pdf

Identifier

CFE0002669

URL

http://purl.fcla.edu/fcla/etd/CFE0002669

Language

English

Release Date

September 2009

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Included in

Physics Commons

Share

COinS