Keywords
NEAT, Neural Networks, Genetic Algorithms, Machine Learning, Observational Learning, Coaching, PSO, Genetic Programming, Instructional Learning, Experiential Learning, Haptics, PIGEON
Abstract
Building an intelligent agent model from scratch is a difficult task. Thus, it would be preferable to have an automated process perform this task. There have been many manual and automatic techniques, however, each of these has various issues with obtaining, organizing, or making use of the data. Additionally, it can be difficult to get perfect data or, once the data is obtained, impractical to get a human subject to explain why some action was performed. Because of these problems, machine learning from observation emerged to produce agent models based on observational data. Learning from observation uses unobtrusive and purely observable information to construct an agent that behaves similarly to the observed human. Typically, an observational system builds an agent only based on prerecorded observations. This type of system works well with respect to agent creation, but lacks the ability to be trained and updated on-line. To overcome these deficiencies, the proposed system works by adding an augmented force-feedback system of training that senses the agents intentions haptically. Furthermore, because not all possible situations can be observed or directly trained, a third stage of learning from practice is added for the agent to gain additional knowledge for a particular mission. These stages of learning mimic the natural way a human might learn a task by first watching the task being performed, then being coached to improve, and finally practicing to self improve. The hypothesis is that a system that is initially trained using human recorded data (Observational), then tuned and adjusted using force-feedback (Instructional), and then allowed to perform the task in different situations (Experiential) will be better than any individual step or combination of steps.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2009
Advisor
Gonzalez, Avelino
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Science
Degree Program
Computer Engineering
Format
application/pdf
Identifier
CFE0002746
URL
http://purl.fcla.edu/fcla/etd/CFE0002746
Language
English
Release Date
September 2009
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Stein, Gary, "Falconet: Force-feedback Approach For Learning From Coaching And Observation Using Natural And Experiential Training" (2009). Electronic Theses and Dissertations. 3988.
https://stars.library.ucf.edu/etd/3988