Keywords
Artificial Intelligence, Machine Learning, Contexts, Human Behavioral Representation, Context-based Reasoning, Learning from Observations, Clustering, Partitioning, Fuzzy ART, K-means, Genetic Programming
Abstract
This research focuses on the ability to contextualize observed human behaviors in efforts to automate the process of tactical human performance modeling through learning from observations. This effort to contextualize human behavior is aimed at minimizing the role and involvement of the knowledge engineers required in building intelligent Context-based Reasoning (CxBR) agents. More specifically, the goal is to automatically discover the context in which a human actor is situated when performing a mission to facilitate the learning of such CxBR models. This research is derived from the contextualization problem left behind in Fernlund's research on using the Genetic Context Learner (GenCL) to model CxBR agents from observed human performance [Fernlund, 2004]. To accomplish the process of context discovery, this research proposes two contextualization algorithms: Contextualized Fuzzy ART (CFA) and Context Partitioning and Clustering (COPAC). The former is a more naive approach utilizing the well known Fuzzy ART strategy while the latter is a robust algorithm developed on the principles of CxBR. Using Fernlund's original five drivers, the CFA and COPAC algorithms were tested and evaluated on their ability to effectively contextualize each driver's individualized set of behaviors into well-formed and meaningful context bases as well as generating high-fidelity agents through the integration with Fernlund's GenCL algorithm. The resultant set of agents was able to capture and generalized each driver's individualized behaviors.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2009
Advisor
Gonzalez, Avelino
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Science
Degree Program
Computer Engineering
Format
application/pdf
Identifier
CFE0002563
URL
http://purl.fcla.edu/fcla/etd/CFE0002563
Language
English
Release Date
May 2009
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Trinh, Viet, "Contextualizing Observational Data For Modeling Human Performance" (2009). Electronic Theses and Dissertations. 3989.
https://stars.library.ucf.edu/etd/3989