Keywords
machine learning, pac, artificial intelligence, learning by decomposition, concept decomposition, examle decomposition
Abstract
For efficient understanding and prediction in natural systems, even in artificially closed ones, we usually need to consider a number of factors that may combine in simple or complex ways. Additionally, many modern scientific disciplines face increasingly large datasets from which to extract knowledge (for example, genomics). Thus to learn all but the most trivial regularities in the natural world, we rely on different ways of simplifying the learning problem. One simplifying technique that is highly pervasive in nature is to break down a large learning problem into smaller ones; to learn the smaller, more manageable problems; and then to recombine them to obtain the larger picture. It is widely accepted in machine learning that it is easier to learn several smaller decomposed concepts than a single large one. Though many machine learning methods exploit it, the process of decomposition of a learning problem has not been studied adequately from a theoretical perspective. Typically such decomposition of concepts is achieved in highly constrained environments, or aided by human experts. In this work, we investigate concept learning by example decomposition in a general probably approximately correct (PAC) setting for Boolean learning. We develop sample complexity bounds for the different steps involved in the process. We formally show that if the cost of example partitioning is kept low then it is highly advantageous to learn by example decomposition. To demonstrate the efficacy of this framework, we interpret the theory in the context of feature extraction. We discover that many vague concepts in feature extraction, starting with what exactly a feature is, can be formalized unambiguously by this new theory of feature extraction. We analyze some existing feature learning algorithms in light of this theory, and finally demonstrate its constructive nature by generating a new learning algorithm from theoretical results.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2009
Advisor
Hughes, Charles
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0002504
URL
http://purl.fcla.edu/fcla/etd/CFE0002504
Language
English
Release Date
May 2009
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Joshi, Sameer, "Concept Learning By Example Decomposition" (2009). Electronic Theses and Dissertations. 3999.
https://stars.library.ucf.edu/etd/3999