Keywords
Human motion analysis, geometric invariant, human action recognition, view invariant, human motion style analysis, human pose recognition
Abstract
Human motion analysis is one of the major problems in computer vision research. It deals with the study of the motion of human body in video data from different aspects, ranging from the tracking of body parts and reconstruction of 3D human body configuration, to higher level of interpretation of human action and activities in image sequences. When human motion is observed through video camera, it is perspectively distorted and may appear totally different from different viewpoints. Therefore it is highly challenging to establish correct relationships between human motions across video sequences with different camera settings. In this work, we investigate the geometric invariance in the motion of human body, which is critical to accurately understand human motion in video data regardless of variations in camera parameters and viewpoints. In human action analysis, the representation of human action is a very important issue, and it usually determines the nature of the solutions, including their limits in resolving the problem. Unlike existing research that study human motion as a whole 2D/3D object or a sequence of postures, we study human motion as a sequence of body pose transitions. We also decompose a human body pose further into a number of body point triplets, and break down a pose transition into the transition of a set of body point triplets. In this way the study of complex non-rigid motion of human body is reduced to that of the motion of rigid body point triplets, i.e. a collection of planes in motion. As a result, projective geometry and linear algebra can be applied to explore the geometric invariance in human motion. Based on this formulation, we have discovered the fundamental ratio invariant and the eigenvalue equality invariant in human motion. We also propose solutions based on these geometric invariants to the problems of view-invariant recognition of human postures and actions, as well as analysis of human motion styles. These invariants and their applicability have been validated by experimental results supporting that their effectiveness in understanding human motion with various camera parameters and viewpoints.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2009
Advisor
Foroosh, Hassan
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0002945
URL
http://purl.fcla.edu/fcla/etd/CFE0002945
Language
English
Release Date
November 2009
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Shen, Yuping, "Geometric Invariance In The Analysis Of Human Motion In Video Data" (2009). Electronic Theses and Dissertations. 4003.
https://stars.library.ucf.edu/etd/4003