Keywords

Lead release, drinking water, distribution system, chlorine, chloramines, ORP, water quality, Pourbaix diagrams

Abstract

Total lead release in drinking water in the presence of free chlorine and chloramine residuals was investigated in field, laboratory and fundamental investigations for finished waters produced from ground (GW), surface (SW), saline (RO) and blended (B) sources. Field investigations found more total lead was released in the presence of chloramines than in the presence of free chlorine for RO and blended finished waters; however, there were no statistical differences in total lead release to finished GW and SW. Laboratory measurements of finished waters oxidation-reduction potential (ORP) were equivalent by source and were not affected by the addition of more than 100 mg/L of sulfates or chlorides, but were significantly higher in the presence of free chlorine relative to chloramines. Development of Pourbaix diagrams revealed the PbO2 was the controlling solid phase at the higher ORP in the presence of free chlorine and Pb3(CO3)2(OH)2(s) (hydrocerussite) was the controlling solid phase in the presence of chloramines at the lower ORP, which mechanistically accounted for the observed release of total lead as PbO2 is much less soluble than hydrocerussite. The lack of differences in total lead release to finished GW and SW was attributed to differences in water quality and intermittent behavior of particulate release from controlling solid films.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2005

Semester

Spring

Advisor

Taylor, James S.

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Civil and Environmental Engineering

Degree Program

Environmental Engineering

Format

application/pdf

Identifier

CFE0000533

URL

http://purl.fcla.edu/fcla/etd/CFE0000533

Language

English

Release Date

May 2005

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS