Keywords

selenoproteins, enzymes, antioxidant, oxidative stress, selenium

Abstract

Selenium is a required micronutrient in mammalian cells. It is incorporated in the form of selenocysteine into selenoenzymes such as glutathione peroxidase and thioredoxin reductase, and is absolutely required for activity. Thioredoxin reductase is necessary for reduction of oxidized thioredoxin and therefore plays a major role in maintaining the redox status of the cell. Glutathione peroxidase is responsible for reducing peroxides into their corresponding alcohols and water. Together, these selenoenzymes constitute a significant part of the cell's arsenal to defend itself against oxidative stress. Exogenous sources of oxidative stress, such as UV radiation, are capable of generating reactive oxygen species (ROS). Elevated levels of ROS can lead to covalent modifications of lipids, nucleic acids, and proteins within a cell. This damage has been implicated in the development of cancer and degenerative diseases. As the skin is the first level of defense for UV radiation, skin cancer is an obvious concern. Previous studies have demonstrated a protective effect against UV-induced cytotoxicity when selenium compounds were administered to skin cells in cell culture models. Topical selenium application to mice has also been shown to reduce UV damage to skin. Although a variety of chemical forms of selenium are available in nutritional supplements, the efficiency by which they are used for selenoprotein synthesis varies greatly. It is debated within the selenium research community which form is best for use as a supplement. In this study, we have focused on a selenotrisulfide derivative of alpha-lipoic acid (LASe). We have examined its utilization for selenoprotein synthesis through radiolabeling studies (75Se) in a human keratinocyte cell line (HaCaT). We have determined that is incorporated into selenoproteins with nearly the same efficiency as selenite and L-selenocysteine. We have also determined that LASe is far more efficient as a supplement in cell culture than selenate or L-selenomethionine, two forms of selenium commonly used as supplements. LASe was also found to protect HaCaT keratinocytes from UV- induced cytotoxicity. Cells pretreated with LASe and exposed to 500J/m2 and 750J/m2 of broadband (UVA/UVB) UV radiation showed greater survival than untreated controls in a dose –dependent manner. Cells pre-treated either with lipoic acid or selenium in the form of selenite alone also observed protection. Nonetheless, these finding are significant given that LASe was previously shown to penetrate the skin better than other forms of selenium. These results indicate that LASe has the potential for use as a topical antioxidant upon further testing in animal studies.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2005

Semester

Summer

Advisor

Self, William T.

Degree

Master of Science (M.S.)

College

Burnett College of Biomedical Sciences

Department

Molecular Biology and Microbiology

Degree Program

Molecular Biology and Microbiology

Format

application/pdf

Identifier

CFE0000663

URL

http://purl.fcla.edu/fcla/etd/CFE0000663

Language

English

Release Date

August 2006

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS