Keywords
Thin Disk Laser, Laser Simulations
Abstract
High power lasers have been adapted to material processing, energy, military and medical applications. In the Laser Plasma Laboratory at CREOL, UCF, high power lasers are used to produce highly ionized plasmas to generate EUV emission. This thesis examines the quality of a recently acquired high power thin disk laser through thermal modeling and beam parameter measurements. High power lasers suffer from thermally induced issues which degrade their operation. Thin disk lasers use an innovative heat extraction mechanism that eliminates the transverse thermal gradient within the gain medium associated with thermal lensing. A thorough review of current thin disk laser technology is described. Several measurement techniques were performed on a high power thin disk laser. The system efficiencies, spectrum, and temporal characteristics were examined. The laser was characterized in the far-field regime to determine the beam quality and intensity of the laser. Laser cavity simulations of the thin disk laser were performed using LASCAD. The induced thermal and stress effects are demonstrated. Simulated output power and efficiency is compared to those that have been quantified experimentally.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2010
Advisor
Richardson, Martin
Degree
Master of Science in Electrical Engineering (M.S.E.E.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Science
Degree Program
Electrical Engineering
Format
application/pdf
Identifier
CFE0003216
URL
http://purl.fcla.edu/fcla/etd/CFE0003216
Language
English
Release Date
August 2014
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Rodriguez-Valls, Omar, "Characterization And Modeling Of A High Power Thin Disk Laster" (2010). Electronic Theses and Dissertations. 4351.
https://stars.library.ucf.edu/etd/4351