Keywords

balsa, frp, composite, carbon, glass, fiber

Abstract

The United States of America's Military, more specifically the Army, has since the late 1990's had a vested interest in the development of super-lightweight, portable, short-span composite bridge and decking components to replace aging heavy metal-alloy machine driven modular systems. The following study looks at the feasibility of using balsa wood as the structural core material in fiber reinforced polymer (FRP) wrapped hollow-core composites in short-span bridge applications. The balsa provides shear resistance and the FRP the flexural resistance, resulting in extremely high strength-to-weight and strength-to-depth ratios. Several scaled short span specimens were constructed and tested using a variety of fibers and resins. In addition, a calibrated finite element model (FEM) was developed using data acquired through testing. Of the 3 FRP-matrices tested (carbon-polyurethane, glass-polyurethane, and carbon-epoxy-resin), the carbon-epoxy-resin had the stiffest cross-section and highest ultimate load achieved, although the fiber did not have the highest elastic modulus and ultimate rupture strength of the constituent materials. The carbon-polyurethane fiber had the largest elastic modulus and ultimate strength, but due to construction difficulties did not perform as well as expected. The glass-polyurethane fiber had the lowest elastic modulus and ultimate load with high strain values and performed accordingly during specimen testing. Given the constraints of self-weight, section geometry, and deflection set forth for lightweight short-span portable bridging solutions, this study demonstrates that the balsa-FRP composite systems are viable solutions; in particular, when carbon fabric is paired with balsa cores.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2010

Advisor

Mackie, Kevin

Degree

Master of Science in Civil Engineering (M.S.C.E.)

College

College of Engineering and Computer Science

Department

Civil and Environmental Engineering

Degree Program

Civil Engineering

Format

application/pdf

Identifier

CFE0002997

URL

http://purl.fcla.edu/fcla/etd/CFE0002997

Language

English

Release Date

May 2010

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS