Keywords
chemiluminescence modeling shock tube kinetics diagnostics
Abstract
Chemiluminescence from the OH(A-X) transition near 307 nm is a commonly used diagnostic in combustion applications such as flame chemistry, shock-tube experiments, and reacting-flow visualization. Measurements of the chemiluminescent intensity provide a simple, cost-effective, non-intrusive look at the combustion environment. The presence of the ultra-violet emission is often used as an indicator of the flame zone in practical combustion systems, and its intensity may be correlated to the temperature distribution or other parameters of interest. While absolute measurements of the ground-state OH(X) concentrations are well-defined, there is no elementary relation between emission from the electronically excited state (OH*) and its absolute concentration. Thus, to enable quantitative emission measurements, a kinetics model has been assembled and optimized to predict OH* formation and quenching at combustion conditions. Shock-tube experiments were conducted in mixtures of H2/O2/Ar, CH4/O2/Ar and CH4/H2/O2/Ar with high levels of argon dilution (> 98%). Elementary reactions to model OH*, along with initial estimates of their rate coefficients, were taken from the literature. The important formation steps follow. CH + O2 = OH* + CO (R0) H + O + M = OH* + M (R1) H + OH + OH = OH* + H2O (R2) Sensitivity analyses were performed to design experiments at conditions most sensitive to the formation reactions. A fitting routine was developed to express the key rate parameters as a function of a single rate, k1 at the reference temperature (1490 K). With all rates so expressed, H2/CH4 mixtures were designed to uniquely determine the value of k1 at the reference temperature, from which the remaining rate parameters were calculated. Quenching rates were fixed at their literature values. Comparisons to predictions of previously available models show marked improvement relative to the new shock-tube data. An approach for using this work in the calibration of further measurements is outlined taking examples from a recent ethane oxidation study. The new model qualitatively matches the experimental data over the range of conditions studied and provides quantitative results applicable to real combustion environments, containing higher-order hydrocarbon fuels and lower levels of dilution in air.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2005
Semester
Fall
Advisor
Petersen, Eric
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical, Materials, and Aerospace Engineering
Degree Program
Mechanical Engineering
Format
application/pdf
Identifier
CFE0000888
URL
http://purl.fcla.edu/fcla/etd/CFE0000888
Language
English
Release Date
January 2015
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Hall, Joel, "An Optimized Kinetics Model For Oh Chemiluminescence At High Temperatures And Atmospheric Pressures" (2005). Electronic Theses and Dissertations. 4458.
https://stars.library.ucf.edu/etd/4458