Keywords
One way hash chains, authentication, internet sessions, session cookies, caching, merkle hash trees and hash calendar
Abstract
In this dissertation, new approaches that utilize the one-way cryptographic hash functions in designing improved network security protocols are investigated. The proposed approaches are designed to be scalable and easy to implement in modern technology. The first contribution explores session cookies with emphasis on the threat of session hijacking attacks resulting from session cookie theft or sniffing. In the proposed scheme, these cookies are replaced by easily computed authentication credentials using Lamport's well-known one-time passwords. The basic idea in this scheme revolves around utilizing sparse caching units, where authentication credentials pertaining to cookies are stored and fetched once needed, thereby, mitigating computational overhead generally associated with one-way hash constructions. The second and third proposed schemes rely on dividing the one-way hash construction into a hierarchical two-tier construction. Each tier component is responsible for some aspect of authentication generated by using two different hash functions. By utilizing different cryptographic hash functions arranged in two tiers, the hierarchical two-tier protocol (our second contribution) gives significant performance improvement over previously proposed solutions for securing Internet cookies. Through indexing authentication credentials by their position within the hash chain in a multi-dimensional chain, the third contribution achieves improved performance. In the fourth proposed scheme, an attempt is made to apply the one-way hash construction to achieve user and broadcast authentication in wireless sensor networks. Due to known energy and memory constraints, the one-way hash scheme is modified to mitigate computational overhead so it can be easily applied in this particular setting. The fifth scheme tries to reap the benefits of the sparse cache-supported scheme and the hierarchical scheme. The resulting hybrid approach achieves efficient performance at the lowest cost of caching possible. In the sixth proposal, an authentication scheme tailored for the multi-server single sign-on (SSO) environment is presented. The scheme utilizes the one-way hash construction in a Merkle Hash Tree and a hash calendar to avoid impersonation and session hijacking attacks. The scheme also explores the optimal configuration of the one-way hash chain in this particular environment. All the proposed protocols are validated by extensive experimental analyses. These analyses are obtained by running simulations depicting the many scenarios envisioned. Additionally, these simulations are supported by relevant analytical models derived by mathematical formulas taking into consideration the environment under investigation.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2014
Semester
Fall
Advisor
Bassiouni, Mostafa
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0005453
URL
http://purl.fcla.edu/fcla/etd/CFE0005453
Language
English
Release Date
December 2014
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Alabrah, Amerah, "Improved Internet Security Protocols Using Cryptographic One-Way Hash Chains" (2014). Electronic Theses and Dissertations. 4599.
https://stars.library.ucf.edu/etd/4599