Keywords
Differential equations, homotopy analysis method
Abstract
Nonlinear partial differential equations are difficult to solve, with many of the approximate solutions in the literature being numerical in nature. In this work, we apply the Homotopy Analysis Method to give approximate analytical solutions to nonlinear ordinary and partial differential equations. The main goal is to apply different linear operators, which can be chosen, to solve nonlinear problems. In the first three chapters, we study ordinary differential equations (ODEs) with one or two linear operators. As we progress, we apply the method to partial differential equations (PDEs) and use several linear operators. The results are all purely analytical, meaning these are approximate solutions that we can evaluate at points and take their derivatives. Another main focus is error analysis, where we test how good our approximations are. The method will always produce approximations, but we use residual errors on the domain of the problem to find a measure of error. In the last two chapters, we apply similarity transforms to PDEs to transform them into ODEs. We then use the Homotopy Analysis Method on one, but are able to find exact solutions to both equations.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2014
Semester
Summer
Advisor
Vajravelu, Kuppalapalle
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Mathematics
Degree Program
Mathematics
Format
application/pdf
Identifier
CFE0005303
URL
http://purl.fcla.edu/fcla/etd/CFE0005303
Language
English
Release Date
August 2019
Length of Campus-only Access
5 years
Access Status
Doctoral Dissertation (Open Access)
Subjects
Dissertations, Academic -- Sciences; Sciences -- Dissertations, Academic
STARS Citation
Baxter, Mathew, "Analytical solutions to nonlinear differential equations arising in physical problems" (2014). Electronic Theses and Dissertations. 4666.
https://stars.library.ucf.edu/etd/4666