Keywords
Laser spark, ignition, diffusion flames, non premixed, damkohler number, ignition delay time, counterflow, thermal diffusive properties, diluents
Abstract
A pulsed Nd:YAG laser is used to study laser spark ignition of methane counter-flow diffusion flames with the use of helium and argon as diluents to achieve a wide range of variations in transport properties. The global strain rate and Damkohler number on successful ignition were investigated for the effects of Lewis number and transport properties, which are dependent on the diluent type and dilution level. A high-speed camera is used to record the ignition events and a software is used for pre-ignition flow field and mixing calculations. It is found that the role of effective Lewis number on the critical global strain rate, beyond which ignition is not possible, is qualitatively similar that on the extinction strain rate. With the same level of dilution, the inert diluent with smaller Lewis number yields larger critical global strain rate. The critical Damkohler number below which no ignition is possible is found to be within approximately 20% for all the fuel-inert gas mixtures studied. When successful ignition takes place, the ignition time increases as the level of dilution of argon is increased. The ignition time decreases with increasing level of helium dilution due to decreases in thermal diffusion time, which causes rapid cooling of the flammable layer during the ignition process. However, the critical strain for ignition with helium dilution rapidly decreases as the dilution level is increased. The experimental results show that with the increase of strain rate the time to steady flame decreases, and that with the increase of dilution level time for the flame to become steady increases. For the same level of dilution, the time for steady flame is observed to be longer for He-diluted flames than for Ar-diluted flames due to its thermal diffusivity being larger than that of Ar.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2012
Semester
Spring
Advisor
Deng, Weiwei
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering; Thermofluids
Format
application/pdf
Identifier
CFE0004295
URL
http://purl.fcla.edu/fcla/etd/CFE0004295
Language
English
Release Date
May 2012
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science;Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Segura, Fidelio Sime, "Laser Spark Ignition of Counter-flow Diffusion Flames: Effects of diluents and diffusive-thermal properties" (2012). Electronic Theses and Dissertations. 4681.
https://stars.library.ucf.edu/etd/4681