Keywords
Ceramic matrix composites, basalt fiber, polymer derived ceramics
Abstract
The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260°C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2014
Semester
Summer
Advisor
Gou, Jihua
Degree
Master of Science in Materials Science and Engineering (M.S.M.S.E.)
College
College of Engineering and Computer Science
Department
Materials Science Engineering
Degree Program
Materials Science and Engineering
Format
application/pdf
Identifier
CFE0005320
URL
http://purl.fcla.edu/fcla/etd/CFE0005320
Language
English
Release Date
August 2014
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Cox, Sarah, "Processing and Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics" (2014). Electronic Theses and Dissertations. 4758.
https://stars.library.ucf.edu/etd/4758