Keywords

Microwave oscillators, multi heterodyne detection, millimeter wave generation

Abstract

This work uses the photonic filtering properties of Fabry-Perot etalons to show improvements in the electrical signals created upon photodetection of the optical signal. First, a method of delay measurement is described which uses multi-heterodyne detection to find correlations in white light signals at 20 km of delay to sub millimeter resolution. By filtering incoming white light with a Fabry-Perot etalon, the pseudo periodic signal is suitable for measurement by combining and photodetecting it with an optical frequency comb. In this way, optical data from a large bandwidth can be downconverted and sampled on low frequency electronics. Second, a high finesse etalon is used as a photonic filter inside an optoelectronic oscillator (OEO). The etalon's narrow filter function allows the OEO loop length to be extremely long for a high oscillator quality factor while still suppressing unwanted modes below the noise floor. The periodic nature of the etalon allows it to be used to generate a wide range of microwave and millimeter wave tones without degradation of the RF signal.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2014

Semester

Fall

Advisor

Delfyett, Peter

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0005457

URL

http://purl.fcla.edu/fcla/etd/CFE0005457

Language

English

Release Date

December 2014

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Optics and Photonics; Optics and Photonics -- Dissertations, Academic

Share

COinS