Keywords

Hydrogen, NOx emission, Flame unsteadiness, Burke-Schumann, Lewis number, Damkohler number

Abstract

Experimental studies on the coupled effects of transport properties and unsteady fluid dynamics have been conducted on laminar, acoustically forced, hydrogen jet diffusion flames diluted by argon and helium. The primary purpose of this research is to determine how the fuel Lewis number and the flow unsteadiness play a combined role in maximum flame temperature and affect NOx emission from jet diffusion flame. The fuel Lewis number is varied by increasing/decreasing the mole fraction of diluents in the fuel stream. Therefore, maximum flame temperatures and then NOx emission levels were expected to differ for Ar- and He-diluted flames. In an investigation of unsteady flames, two different frequencies (10 and 100 Hz) were applied to observe a behavior of NOx emission levels and flame lengths by changes of unsteady fluid dynamics and transport properties.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2005

Semester

Summer

Advisor

Chen, Ruey-Hung

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials, and Aerospace Engineering

Degree Program

Mechanical Engineering

Format

application/pdf

Identifier

CFE0000646

URL

http://purl.fcla.edu/fcla/etd/CFE0000646

Language

English

Release Date

August 2005

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS