Keywords
Omi/HtrA2, hRad21
Abstract
Omi/HtrA2 is a mitochondrial serine protease with high homology to the bacterial HtrA proteins. Omi promotes caspase-dependent apoptosis by binding and degrading IAPs-inhibitor of apoptosis proteins. Omi can also induce caspase-independent apoptosis but the actual mechanism is still unknown. IAP's are not the only substrates cleaved by Omi. There are at least two more known substrates of Omi, the HAX-1 and the ped/pea-15 proteins. HS1-associated protein X-1 (HAX-1) is a mitochondrial protein, degraded by Omi after induction of caspase-dependent apoptosis. Ped/pea-15 is also an anti-apoptotic protein and is cleaved by Omi after induction of caspase-independent apoptosis. The proteolytic activity of Omi is necessary and essential for its pro-apoptotic function. Recent studies suggest the proteolytic activity of Omi is regulated by specific protein-protein interactions. Presenilin was identified to be such a regulator of Omi. It binds to the PDZ domain of Omi via its carboxy-terminus and this interaction significantly increases the proteolytic activity of the enzyme. My project was aimed to investigate the normal function of Omi in cell death and the mechanism of its regulation by isolating and characterizing novel Omi interactors. I screened a human melanocyte cDNA library using the yeast-two-hybrid system and Omi as the "bait" protein. Human Rad21 protein was isolated as a specific novel interactor of Omi. Human Rad21 interacted with the PDZ domain of Omi, the part of the protein known to be involved in protein-protein interactions. Human Rad21 is a nuclear protein that plays a role in DNA double-strand break repair and sister chromatid cohesion during metaphase. Several reports suggest hRad21 has also a role in apoptosis; it is cleaved by caspase-3 and part of the protein becomes cytoplasmic. Human Rad21 was not cleaved by Omi in vitro and therefore it is unlikely to be a substrate. When tested in a proteolytic assay Rad21 was able to increase the proteolytic activity of Omi. My work suggests a new mechanism whereby Omi and hRad21 can co-operate to induce cell death. This mechanism necessitates direct interaction of hRad21 with the PDZ domain of Omi resulting in increased proteolytic activity of the enzyme.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2005
Semester
Summer
Advisor
Zervos, Antonis S.
Degree
Master of Science (M.S.)
College
Burnett College of Biomedical Sciences
Department
Molecular Biology and Microbiology
Degree Program
Molecular Biology and Microbiology
Format
application/pdf
Identifier
CFE0000586
URL
http://purl.fcla.edu/fcla/etd/CFE0000586
Language
English
Release Date
August 2005
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Singh, Supriya, "Novel Protein-protein Interactions Regulate The Proteolytic Activity Of The Pro- Apoptotic Serine Protease, Omi/htra2" (2005). Electronic Theses and Dissertations. 505.
https://stars.library.ucf.edu/etd/505