Abstract

Boil-off of a cryogenic fluid which is caused by the temperature difference between the fluid and its environment is a phenomenon which has long been studied and is well understood. However, vibrational excitation of a cryogenic storage tank and the fluid inside it also play a role in the loss of cryogens. Mechanical energy applied to the system in the form of vibrational input is converted into thermal energy via viscous damping of the fluid. As a result, when a storage tank full of cryogenic fluids is vibrated, it boils off at an increased rate. A series of experiments were performed in which a cryogenic storage Dewar filled with liquid nitrogen was subjected to vibrational input and the rate of boil-off was measured. Based on the results of the testing, it has been determined that the rate of boil-off of a cryogenic fluid increases by a factor of up to five times the resting boil off rate during the application of vibrational energy. The development of advanced cryogenic storage systems capable of reducing vibrational loading of the fluid could significantly decrease the loss of cryogens during procedures such as transporting and storing the fluid or launching a space vehicle.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2016

Semester

Summer

Advisor

Chow, Louis

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Mechanical Systems

Format

application/pdf

Identifier

CFE0006389

URL

http://purl.fcla.edu/fcla/etd/CFE0006389

Language

English

Release Date

August 2016

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS