Abstract
We explore the concepts of coherence and entanglement as they apply to both the classical and quantum natures of light. In the classical domain, we take inspiration from the tools and concepts developed in foundational quantum mechanics and quantum information science to gain a better understanding of classical coherence theory of light with multiple degrees of freedom (DoFs). First, we use polarization and spatial parity DoFs to demonstrate the notion of classical entanglement, and show that Bell's measure can serve as a useful tool in distinguishing between classical optical coherence theory. Second, we establish a methodical yet versatile approach called 'optical coherency matrix tomography' for reconstructing the coherency matrix of an electromagnetic beam with multiple DoFs. This technique exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Third, we report the first experimental measurements of the 4 x 4 coherency matrix associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young's double slit to spatial parity and orbital angular momentum modes. In the quantum domain, we use the modal structure of classical fields to develop qubits and structure Hilbert spaces for use in quantum information processing. Advancing to three-qubit logic gates is an important step towards the success of optical schemes for quantum computing. We experimentally implement a variety of two- and three- qubit, linear and deterministic, single-photon, controlled, quantum logic gates using polarization and spatial parity qubits. Lastly, we demonstrate the implementation of two-qubit single-photon logic using polarization and orbital angular momentum qubits.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2015
Semester
Fall
Advisor
Saleh, Bahaa
Degree
Doctor of Philosophy (Ph.D.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics and Photonics
Format
application/pdf
Identifier
CFE0006334
URL
http://purl.fcla.edu/fcla/etd/CFE0006334
Language
English
Release Date
6-15-2017
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Kagalwala, Kumel, "Entanglement and Coherence in Classical and Quantum Optics" (2015). Electronic Theses and Dissertations. 5150.
https://stars.library.ucf.edu/etd/5150