Keywords
Modeling and Simulation, Training Effectiveness, Motion Platform, Aviation Training, Simulator, Helicopter Training
Abstract
This research investigates the Training Effectiveness of a low-cost, PC-based training system when compared with two modes (motion and no motion) of a cab training system with large screen for various aviation flying tasks. While much research on this topic has been done in the past, advances in technology have significantly altered what is considered a "low-cost" "simulator." The technology advances have in effect increased the ability of a "low-cost" "simulator" to deliver desired experiences to the user. These "simulators" often are nothing more than PC training system, with only notional representations of the actual aircraft. This research considers the use of such training systems in training for a highly complex and dynamic task situation, that task being a search and rescue mission. A search and rescue mission is far more complex task than those studied for possible "low-cost" simulation substitution in the past. To address that aspect, one mode of the cab involves motion in two degrees of freedom. The results of this research advances the body of literature on the capability of "low-cost" simulation to deliver the experiences necessary to learn highly complex tasks associated with search and rescue as well as further clarify the extent to which a motion platform aides in flight training. This research utilizes available platforms provided by the US Army Research, Development and Engineering Command Simulation and Training Technology Center. Additionally, all the participants in the research are in training to be helicopter pilots. Participants were randomly assigned to one of three training configurations: a) Cab with motion turned ON, b) Cab with motion turned OFF and c) PC-based simulator. Training effectiveness is evaluated using measures for learning, task performance, and human factors. Statistically significant results are shown for the Cab with Motion and the Cab with No Motion configurations.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2005
Semester
Fall
Advisor
Proctor, Michael
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Industrial Engineering and Management Systems
Degree Program
Industrial Engineering and Management Systems
Format
application/pdf
Identifier
CFE0000754
URL
http://purl.fcla.edu/fcla/etd/CFE0000754
Language
English
Release Date
January 2006
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Bauer, Maria, "Evaluating The Effectiveness Of Training System Approaches For Highly Complex Flight Training" (2005). Electronic Theses and Dissertations. 529.
https://stars.library.ucf.edu/etd/529