Abstract

This thesis covers a range of work detailing the transitions between spin eigenstates in molecular magnet systems. Broadly speaking, these transitions can be divided into two kinds: Those that involve a the tunneling of spin through a potential barrier to a resonant state on the other side, a phenomenon known as quantum tunneling of magnetization, and those that occur through the absorption or emission of a photon. In this latter case, the energy of the photon must match the difference between two eigenstates with a difference in angular momentum of ?. We will detail research performed on single molecule magnets, a class of systems that has established itself as an exemplar of higher-order spin interaction. Specifically, we will present the results of studies focused on two Manganese based systems, both of which represent good examples of single molecule magnet behavior. By performing magnetization measurements below the temperature threshold where these systems' polarizations become hysteretic, we find that the precise form of the observed resonant tunneling features (which includes evidence for strong interference of geometric phase a.k.a. Berry phase) can be related to the specifics of the intramolecular interaction. We have analyzed our results using the "giant spin" model (which approximates the system as a single spin) as well as with a "multi-spin" method which considers all interactions between the ions in the molecular core. We will also discuss the results of measurements performed on a crystalline sample under stress (uniaxial pressure). The data has been analyzed in a framework in which a physical distortion is modelled as a modification of the molecular anisotropy, with different directions of applied stress represented as changes to different parameters governing the molecular energy landscape. This analysis includes simulation of the magnetic relaxation through a master equation approach to the spin-phonon interaction. Finally, our discussion will outline efforts toward understanding the coherent behavior of spin systems. The "weak" and "strong" coupling between a photon and spin represent two regimes of an interaction by which the information within a spin can be accessed and manipulated. We will discuss the challenges involved in exploring these regimes, both from a theoretical and experimental standpoint. The purpose of this experiment dovetails with those outlined above in attempting to form an intimate basis of knowledge describing the universal relationships to spin at the most fundamental level.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2016

Semester

Spring

Advisor

Del Barco, Enrique

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Physics

Degree Program

Physics

Format

application/pdf

Identifier

CFE0006524

URL

http://purl.fcla.edu/fcla/etd/CFE0006524

Language

English

Release Date

November 2016

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Included in

Physics Commons

Share

COinS