Abstract
Laser filamentation is a nonlinear process involving high-energy, ultrashort pulses that create narrow, non-diffracting structures over many times the Raleigh length. While many of the characteristics of filaments can vary greatly depending on the physical parameters used to create them, they share several defining features: a high intensity core, a lower intensity cladding of photons that serves as an energy reservoir to the core, and spectral broadening into a supercontinuum. While there have been many studies on the creation and control of multiple filaments from one laser pulse and a few studies on the interaction of two single filaments, many fundamental questions concerning the nature of this interaction still exist. This thesis seeks to explore the correlation between ultrashort pulses involving spatial separation, temporal delay, and relative degree of polarization using an interferometric approach. Evaluating the beam profiles and spectrum that result from varying those parameters.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2016
Semester
Spring
Advisor
Richardson, Martin
Degree
Master of Science (M.S.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics and Photonics
Format
application/pdf
Identifier
CFE0006531
URL
http://purl.fcla.edu/fcla/etd/CFE0006531
Language
English
Release Date
November 2021
Length of Campus-only Access
5 years
Access Status
Masters Thesis (Open Access)
STARS Citation
Kepler, Daniel, "Coupling of Laser Beams for Filament Propagation" (2016). Electronic Theses and Dissertations. 5312.
https://stars.library.ucf.edu/etd/5312