Abstract

Ultrashort pulse lasers are well-established in the scientific community due to the wide range of applications facilitated by their extreme intensities and broad bandwidth capabilities. This thesis will primarily present the design for the Mobile Ultrafast High Energy Laser Facility (MU-HELF) for use in outdoor atmospheric propagation experiments under development at the Laser Plasma Laboratory at UCF. The system is a 100fs 500 mJ Ti-Sapphire Chirped-Pulse Amplification (CPA) laser, operating at 10 Hz. Some background on the generation of very high intensity optical pulses is also presented, alongside an overview of the physics of filamentation. As part of the design of MU-HELF, this thesis focuses on a novel approach to manage the large amount of dispersion required to stretch the pulse for CPA utilizing a custom nonlinear chirped Volume Bragg Grating (VBG) as a pulse stretcher matched to a traditional Treacy compressor. As part of this thesis, the dispersion of the CPA system was thoroughly modeled to properly design the chirped VBG and fabricated VBGs were characterized using a scanning spectral interferometry technique. The work demonstrates the feasibility of using a compact monolithic pulse stretcher in terawatt class CPA lasers.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2017

Semester

Spring

Advisor

Shah, Lawrence

Degree

Master of Science (M.S.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0006651

URL

http://purl.fcla.edu/fcla/etd/CFE0006651

Language

English

Release Date

May 2017

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Included in

Optics Commons

Share

COinS