Keywords
combustion, methane, natural gas, gas turbine, shock tube, chemical kinetics
Abstract
Natural gas has grown in popularity as a fuel for power generation gas turbines. However, changes in fuel composition are a topic of concern since fuel variability can have a great impact on the reliability and performance of the burner design. In particular, autoignition of the premixed fuel and air prior to entering the main burner is a potential concern when using exotic fuel blends. To obtain much-needed data in this area, autoignition experiments for a wide range of likely fuel blends containing CH4 mixed with combinations of C2H6, C3H8, C4H10, C5H12, and H2 were performed in a high-pressure shock tube. However, testing every possible fuel blend combination and interaction was not feasible within a reasonable time and cost. Therefore, to predict the surface response over the complete mixture domain, a special experimental design was developed to significantly reduce the amount of 'trials' needed from 243 to only 41 using the Box-Behnkin factorial design methodology. Kinetics modeling was used to obtain numerical results for this matrix of fuel blends, setting the conditions at a temperature of 800 K and pressure of 17 atm. A further and successful attempt was made to reduce the 41-test matrix to a 21-test matrix. This was done using special mixture experimental techniques. The kinetics model was used to compare the smaller matrix to the expected results of the larger one. The new 21-test matrix produced a numerical correlation that agreed well with the results from the 41-test matrix, indicating that the smaller matrix would provide the same statistical information as the larger one with acceptable precision. iii After the experimental matrix was developed using the design of experiments approach, the physical experiments were performed in the shock tube. Long test times were created by "tailoring" the shock tube using a novel driver gas mixture, obtaining test times of 10 millisecond or more, which made experiments at low temperatures possible. Large discrepancies were found between the predicted results by numerical models and the actual experimental results. The main conclusion from the experiments is that the methane-based mixtures in this study enter a regime with a negative temperature coefficient when plotted in Arhennius form. This means that these mixtures are far more likely to ignite under conditions frequently encountered in a premixer, potentially creating hazardous situations. The experimental results were correlated as a function of the different species. It was found that the effect of higher-order hydrocarbon addition to methane is not as profound as seen at higher temperatures (>1100 K). However, the ignition delay time could still be reduced by a factor two or more. It is therefore evident that potential autoignition could occur within the premixer, given the conditions as stated in this study.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2005
Semester
Fall
Advisor
Petersen, Eric
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Department
Mechanical, Materials, and Aerospace Engineering
Degree Program
Aerospace Engineering
Format
application/pdf
Identifier
CFE0000817
URL
http://purl.fcla.edu/fcla/etd/CFE0000817
Language
English
Release Date
January 2006
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
de Vries, Jaap, "An Investigation Of The Autoignition Of Power Generation Gas Turbine Fuel Blends Using A Design Of Experiments Approach" (2005). Electronic Theses and Dissertations. 543.
https://stars.library.ucf.edu/etd/543