Keywords

Topology, Control, DC-DC, Bandwidth, Peak-Current-Mode, Efficiency

Abstract

Efficiency and transient response are two key requirements for DC-DC converters. Topology and control are two key topics in this dissertation. A variety of techniques for DC-DC converter performance improvement are presented in this work. Focusing on the efficiency issue, a variety of clamping techniques including both active and passive methods are presented after the ringing issues in DC-DC converters are investigated. By presenting the clamping techniques, a big variety of energy management concepts are introduced. The active bridge-capacitor tank clamping and FET-diode-capacitor tank clamping are close ideas, which transfer the leakage inductor energy to clamping capacitor to prevent oscillation between leakage inductor and junction capacitor of MOSFETs. The two-FET-clamping tank employs two MOSFETs to freewheeling the leakage current when the main MOSFETs of the half-bridge are both off. Driving voltage variation on the secondary side Synchronous Rectifier (SR) MOSFETs in self-driven circuit due to input voltage variation in bus converter applications is also investigated. One solution with a variety of derivations is proposed using zerner-capacitor combination to clamping the voltage while maintaining reasonable power losses. Another efficiency improvement idea comes from phase-shift concept in DC-DC converters. By employing phase-shift scheme, the primary side and the secondary side two MOSFETs have complementary driving signals respectively, which allow the MOSFET to be turned on with Zero Voltage Switching (ZVS). Simulation verified the feasibility of the proposed phase-shifted DC-DC converter. From the control scheme point of view, a novel peak current mode control concept for half-bridge topologies is presented. Aiming at compensating the imbalanced voltage due to peak current mode control in symmetric half-bridge topologies, an additional voltage compensation loop is used to bring the half-bridge capacitor voltage back to balance. In the proposed solutions, one scheme is applied on symmetric half-bridge topology and the other one is applied on Duty-cycle-shifted (DCS) half-bridge topology. Both schemes employ simple circuitry and are suitable for integration. Loop stability issues are also investigated in this work. Modeling work shows the uncompensated half-bridge topology cannot be stabilized under all conditions and the additional compensation loop helps to prevent the voltage imbalance effectively.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2005

Semester

Fall

Advisor

Batarseh, Issa

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0000840

URL

http://purl.fcla.edu/fcla/etd/CFE0000840

Language

English

Release Date

January 2006

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS