Abstract

Inflammatory Bowel Disease and Crohn's disease represent chronic intestinal inflammatory diseases. It is suspected that bacterial infection is one of the causes of gut inflammation. Studies from others as well as from our laboratory have indicated that peroxidized lipids and their decomposition products are pro-inflammatory. As we consume considerable amounts of dietary oxidized lipids (arising from deep frying of vegetable oils), we hypothesize that dietary peroxidized lipids may also lead to intestinal inflammation. To test this hypothesis, intestine from C57BL/6J mice were collected and used in this study. The intestinal epithelial tissue as well as intestinal lymphoid tissues [Peyer's Patches (PP)] were identified and harvested. Both the tissue samples were incubated with 13-Hydroperoxyoctadecadienoic acid (HPODE, a simple form of peroxidized fatty acid) or oxidized phosphatidyl choline (Ox-PL) or minimally modified LDL (mmLDL) or bacterial lipopolysaccharide (LPS) at 37°C. After 6 hours of incubation, RNA was extracted and RT-PCR analysis was performed to determine inflammatory markers using mouse primers for the gene expression of cytokines. We noted an increased basal gene expressions of inflammatory cytokines in PP tissues as opposed to the epithelial tissue. An increase in inflammatory cytokines gene expression was observed in LPS/POL treated intestinal tissues as compared to untreated tissues. Overall, our findings might suggest additional potential sources of gut inflammation as well as an active participation of epithelial cells in the inflammatory process. These might also offer novel targets for the control of inflammation of the gut in patients suffering from gut inflammatory diseases.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2016

Semester

Summer

Advisor

Parthasarathy, Sampath

Degree

Master of Science (M.S.)

College

College of Medicine

Department

Molecular Biology and Microbiology

Degree Program

Biotechnology

Format

application/pdf

Identifier

CFE0006683

URL

http://purl.fcla.edu/fcla/etd/CFE0006683

Language

English

Release Date

2-15-2020

Length of Campus-only Access

3 years

Access Status

Masters Thesis (Open Access)

Included in

Biotechnology Commons

Share

COinS