Abstract
Urbanization has become a global trend under the impact of population growth, socio-economic development, and globalization. However, the interactions between climate change and urban growth in the context of economic geography are unclear due to missing links in between the recent planning megacities. This study aims to conduct a multi-temporal change analysis of land use and land cover in New York City, City of London, and Beijing using a cellular automata-based Markov chain model collaborating with fuzzy set theory and multi-criteria evaluation to predict the city's future land use changes for 2030 and 2050 under the background of climate change. To determine future natural forcing impacts on land use in these megacities, the study highlighted the need for integrating spatiotemporal modeling analyses, such as Statistical Downscale Modeling (SDSM) driven by climate change, and geospatial intelligence techniques, such as remote sensing and geographical information system, in support of urban growth assessment. These SDSM findings along with current land use policies and socio-economic impact were included as either factors or constraints in a cellular automata-based Markov Chain model to simulate and predict land use changes in megacities for 2030 and 2050. Urban expansion is expected in these megacities given the assumption of stationarity in urban growth process, although climate change impacts the land use changes and management. More land use protection should be addressed in order to alleviate the impact of climate change.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2017
Semester
Summer
Advisor
Chang, Ni-Bin
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Department
Civil, Environmental, and Construction Engineering
Degree Program
Environmental Engineering; Environmental Engineering Sciences
Format
application/pdf
Identifier
CFE0006761
URL
http://purl.fcla.edu/fcla/etd/CFE0006761
Language
English
Release Date
August 2017
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Lu, Qi, "Linking Climate Change and Socio-economic Impact for Long-term Urban Growth in Three Mega-cities" (2017). Electronic Theses and Dissertations. 5538.
https://stars.library.ucf.edu/etd/5538