Abstract

The traditional design of nucleoside reverse transcriptase inhibitors (NRTI's) involves the synthesis of chain-terminated nucleoside analogs. HIV-RT has relatively low fidelity which facilitates mutations that confer resistance towards NRTI's, also, drug promiscuity from NRTI's result in various side-effects that lead to poor patient adherence to treatment. We designed and tested two-component covalent inhibitors against HIV-RT. Our inhibitor design results in higher specificity due to its binary approach, which has previously been used in biosensing applications, where both components are necessary for therapeutic effect, and lower chances for mutagenesis because of its inhibitory action. The TCCI approach results in up to 93% inhibition of HIV-RT Furthermore, our inhibitor design is highly modular and can be adjusted towards the therapeutic targeting of other biopolymers.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2017

Semester

Fall

Advisor

Kolpashchikov, Dmitry

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Chemistry

Degree Program

Chemistry

Format

application/pdf

Identifier

CFE0006893

URL

http://purl.fcla.edu/fcla/etd/CFE0006893

Language

English

Release Date

December 2017

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Included in

Chemistry Commons

Share

COinS