Abstract
This dissertation is an integration of fundamental research and chemical education. It begins with two nonlinear spectroscopic studies of compounds important to the study of brain chemistry. In Chapter 2, we present a novel method using quantum mechanics for modelling ligand docking and the potential of nonlinear circular dichroism for elucidating the mechanism of cannabinoids docking to their receptor, a contribution to studies of varying psychological effects of cannabinoids. Considering existent challenges with measuring this phenomenon, in Chapter 3, we evaluate two-photon absorption properties of Thioflavin T (ThT) in varying glycerol/water content solutions and discuss the enhancement of nonlinear absorption due to small micelle formation. Our results represent the potential to enhance the applications of ThT for imaging Amyloid beta plaques in vitro and ex vivo and its potential application in vivo. Next, we consider the benefits of incorporating modern research into the undergraduate curriculum. In Chapter 4, we describe the integration of nonlinear optics into the physical chemistry laboratory in a course-based undergraduate research experience and the effects on student learning and perceptions. In Chapter 5, we expand our impact to secondary students by describing the development and assessment of the Orlando Chemistry Training, Enrichment, and Tutoring (OCTET) camp and its success in conveying chemistry concepts and inspiring students to pursue chemistry. In Chapter 6, we combine the successes of the previous two studies and incorporate a research component into OCTET. We study the effect on participants' views about science and show the impact on their practical knowledge about doing science. Finally, in Chapter 6, we extend the implementation of authentic learning to the classroom, present the implementation of active learning in physical chemistry, and describe students' perceptions. The results presented in this dissertation demonstrate successful integration of fundamental research into education and the powerful impact on all parties.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2018
Semester
Spring
Advisor
Hernandez, Florencio
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Chemistry
Degree Program
Chemistry
Format
application/pdf
Identifier
CFE0006997
URL
http://purl.fcla.edu/fcla/etd/CFE0006997
Language
English
Release Date
May 2018
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Donnelly, Julie, "Integration of Fundamental Research and CER: The Role of Authenticity in Developing Views on the Nature of Teaching, Learning, and Doing Science" (2018). Electronic Theses and Dissertations. 5766.
https://stars.library.ucf.edu/etd/5766