Abstract

This study describes three-dimensional (3D) quantitative visualization of density field in a supersonic flow around a cone spike. A measurement of the density gradient is conducted within a supersonic wind tunnel facility at the Propulsion and Energy Research Laboratory at the University of Central Florida utilizing Structured Light-Field Focusing Schlieren (SLLF). In conventional schlieren and Shadowgraph techniques, it is widely known that a complicated optical system is needed and yet visualizable area depends on an effective diameter of lenses and mirrors. Unlike these techniques, SLLF is yet one of the same family as schlieren photography, it is capable of non-intrusive turbulent flow measurement with relatively low cost and easy-to-setup instruments. In this technique, cross-sectional area in the flow field that is parallel to flows can be observed while other schlieren methods measure density gradients in line-of-sight, meaning that it measures integrated density distribution caused by discontinuous flow parameters. To reconstruct a 3D model of shock structure, two-dimensional (2D) images are pictured to process in MATLAB. The ultimate goal of this study is to introduce a novel technique of SLLF and quantitative 3D shock structures generated around a cone spike to reveal the interaction between free-stream flow and the high-pressure region.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Spring

Advisor

Ahmed, Kareem

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering; Thermofluid Aerodynamic Systems

Format

application/pdf

Identifier

CFE0007096

URL

http://purl.fcla.edu/fcla/etd/CFE0007096

Language

English

Release Date

May 2018

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS