Abstract

Monitoring intracranial pressure (ICP) is important for patients with increased intracranial pressure. Invasive methods of ICP monitoring include lumbar puncture manometry, which requires high precision, is costly, and can lead to complications. Non-invasive monitoring of ICP using tympanic membrane pulse (TMp) measurement can provide an alternative monitoring method that avoids such complications. In the current study, a piezo based sensor was designed, constructed and used to acquire TMp signals. The results showed that tympanic membrane waveform changed in morphology and amplitude with increased ICP, which was induced by changing subject position using a tilt table. In addition, the results suggest that TMp are affected by breathing, which has small effects on ICP. The newly developed piezo based brain stethoscope may be a way to monitor patients with increased intracranial pressure thus avoiding invasive ICP monitoring and reducing associated risk and cost.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Spring

Advisor

Mansy, Hansen

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Mechanical Systems

Format

application/pdf

Identifier

CFE0006972

URL

http://purl.fcla.edu/fcla/etd/CFE0006972

Language

English

Release Date

May 2018

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS