Abstract
The Body-on-a-Chip (BoaC) is a microfluidic BioMEMs project that aims to replicate major organs of the human body on a chip, providing an in vitro drug testing platform without the need to resort to animal model testing. Using a human model also provides significantly more accurate drug response data, and may even open the door to personalized drug treatments. Microelectrode arrays integrated with human neuronal or human cardiac cells that are positioned on the electrodes are essential components for BoaC systems. Fabricating these substrates relies heavily on chemically patterned surfaces to control the orientation and growth of the cells. Currently, cells are plated by hand onto the surface of the chemically patterned microelectrode arrays. The cells that land on the cytophobic 2-[Methoxy(Polyethyleneoxy)6-9Propyl]trimethoxysilane (PEG) coating die and detach from the surface, while the cells that land on the cytophilic diethylenetriamine (DETA) coating survive and attach to the surface exhibiting normal physiology and function. The current technique wastes a significant amount of cells, some of which are extremely expensive, and is labor intensive. Cell printing, the process of dispensing cells through a 3D printer, makes it possible to pinpoint the placement of cells onto the microelectrodes, drastically reducing the number of cells utilized. Scaled-up manufacturing is also possible due to the automation capabilities provided by printing. In this work, the specific conditions for printing each cell type is unique, the printing of human motoneurons, human sensory neurons and human cardiac cells was investigated. The viability and functionality of the printed cells are demonstrated by phase images, immunostaining and electrical signal recordings. The superior resolution of cell printing was then taken one step further by successfully printing two different cell types in close proximity to encourage controlled innervation and communication.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2018
Semester
Spring
Advisor
Hickman, James
Degree
Master of Science in Materials Science and Engineering (M.S.M.S.E.)
College
College of Engineering and Computer Science
Department
Materials Science Engineering
Degree Program
Materials Science and Engineering
Format
application/pdf
Identifier
CFE0007390
URL
http://purl.fcla.edu/fcla/etd/CFE0007390
Language
English
Release Date
November 2019
Length of Campus-only Access
1 year
Access Status
Masters Thesis (Open Access)
STARS Citation
Aubin, Megan, "Cell Printing: An Effective Advancement for the Creation of um Size Patterns for Integration into Microfluidic BioMEMs Devices" (2018). Electronic Theses and Dissertations. 6247.
https://stars.library.ucf.edu/etd/6247